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We describe the numerical methods used to solve the system of stiff, nonlinear partial differential
equations resulting from the Hartree-Fock description of many-particle quantum systems, as applied
to the structure of the nucleus. The solutions are performed on a three-dimensional Cartesian lattice.
Discretization is achieved through the lattice basis-spline collocation method, in which quantum-
state vectors and coordinate-space operators are expressed in terms of basis-spline functions on a
spatial lattice. All numerical procedures reduce to a series of matrix-vector multiplications and
other elementary operations, which we perform on a number of different computing architectures,
including the Intel Paragon and the Intel iPSC/860 hypercube. Parallelization is achieved through a
combination of mechanisms employing the Gram-Schmidt procedure, broadcasts, global operations,
and domain decomposition of state vectors. We discuss the approach to the problems of limited node
memory and node-to-node communication overhead inherent in using distributed-memory, multiple-
instruction, multiple-data stream parallel computers. An algorithm was developed to reduce the
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communication overhead by pipelining some of the message passing procedures.

PACS number(s): 02.70.Jn, 02.70.Rw

I. INTRODUCTION

The mean-field formalism has been a successful ap-
proach to fundamental studies of atomic and nuclear
many-body problems [1-4] and promises to be a cru-
cial element in the future development of nuclear astro-
physics. The developed technology is directly applicable
to Hartree-Fock codes used in a number of fields and
could provide a more detailed understanding of such di-
verse phenomena as molecular dynamics [5, 6] and assist
in the design of new biomolecules. The computational
techniques are also applicable to many diverse fields, in-
cluding smooth particle hydrodynamics and nonlinear
stiff equations on parallel supercomputers.

From the numerical standpoint, new techniques have
been developed to handle the solution of the Hartree-
Fock equations on a space-time lattice. In this case these
techniques are applied to the nuclear many-body prob-
lem. In particular, equations of motion were obtained
via the variation of the lattice representations of the con-
stants of the motion, such as the total energy [7-10]. In
this variation after discretization approach, the resulting
equations exactly preserve the constants of the motion.
The lattice techniques are important because the alterna-
tive basis expansion approach requires the optimization
of basis set parameters due to the finite cutoff in the num-
ber of basis states. This procedure becomes very ineffi-
cient for large scale calculation of, say, multidimensional
energy surfaces. Due to their extensive computational
requirements most numerical calculations have employed
low-order, finite-difference discretization techniques. For
example, calculations were done with the assumptions of
spherical or cylindrical symmetry, with no spin degrees
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of freedom, or z-parity symmetry. With the advent of
new supercomputer technologies, it has become feasible
to carry out more extensive Hartree-Fock studies with-
out resorting to the symmetry assumptions employed in
the earlier applications. These calculations are very large
and require Grand Challenge level computing resources.

In order to be able to perform such calculations and
to obtain a more detailed comparison with data it is nec-
essary to exploit higher-order interpolation techniques.
This is due to the fact that precise studies require over-
all accuracies at the level of one part in 103. Consid-
ering the fact that such small numbers arise from the
cancellation of large negative and positive parts, the cal-
culational accuracy of each part needs to be better than
one part in 107. Discretization of the energy functional
on a spline collocation lattice provides a highly accurate
alternative to the finite-difference method [11]. One sig-
nificant advantage of this technique is that in comparison
to the finite-difference method the same level of accuracy
can be attained with a smaller number of lattice points.
The basis-spline collocation method has been recently ap-
plied to the study of low-energy structure and reactions
[12,13], to the solution of the relativistic time-dependent
Dirac equation in strong electromagnetic fields [14], and
to the solution of the relativistic hydrodynamics equa-
tions [15]. In these applications, the implementation of
the basis-spline collocation method has allowed for very
accurate calculations of various quantities while using rel-
atively coarse meshes. Nonuniform grids may also be
employed with facility in this method. An extensive dis-
cussion of the mathematical and numerical properties of
splines can be found in several references [11]. The struc-
ture of the resulting lattice representation is highly suited
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for vector and parallel supercomputers and the method
allows a highly modular programming where the order of
the splines can be defined as an input parameter.

In the next section we briefly outline the basic equa-
tions that are to be studied, introduce the general fea-
tures of the basis-spline collocation method, and discuss
the discretization of the equations, as well as the precon-
ditioned iteration algorithm and the Gram-Schmidt or-
thogonalization process as a part of this iteration scheme.
In Sec. IV we discuss the parallel implementation of the
program. Section V will outline the timing studies on the
parallel computers Intel iPSC/860 and Paragon, Cray 2,
and IBM RS/6000. The paper ends with the discussion
of the results.

II. FORMALISM AND NUMERICAL
DISCRETIZATION

A. Continuous equations

The details of the derivation of the Hartree-Fock equa-
tions can be found in [7-10]. The result for a many-
body Hamiltonian containing a one-body kinetic energy
and two- and three-body momentum-dependent poten-
tial terms is a coupled set of nonlinear partial differential
eigenvalue equations,

hXQ = eaxcx ? (1)

where x,, is a two-component vector (spinor)

Xo = (;‘g) : (2)

The Hamiltonian h has the following form (using natural
units Ai=1,c=1, m=1):

h=-1V24+W(p,1,jJ),
W =Vn(r) + Ve(r), 3)
where V) is the nuclear potential depending on various
currents and densities and V¢ is the Coulomb interaction.

The densities and currents depend on the states x, and
are explicitly given by

p(r) =Y wa{lxi ()1 + Ixa(c)*} (4)
T(r) = za:wm{IVxI(r)l2 +1Vxg ()}, (5)
ir)= Za:wa{lm[x;"(r )VxE(r)

:x;‘(r)Vx; ()} (6)
IJ(r)=—i Z: wax4"(r)(V x o)xh (r') . (7

Ve requires the solution of the Poisson equation in three-
dimensional geometry,

V23Vo(r) = —4me?p(r) . (8)

As can be seen from above the solution of the system of
equations (1) has to be obtained self-consistently and an
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accurate solution requires a good representation of vari-
ous derivatives of the states x,. Currently, most Hartree-
Fock (HF) and time-dependent Hartree-Fock (TDHF)
calculations are performed using finite-difference lattice
techniques. It is desirable to investigate higher-order in-
terpolation methods which result in the improvement of
the overall accuracy and reduction in the total number
of lattice points. The lattice solution of differential equa-
tions on a discretized mesh of independent variables may
be viewed to proceed in two steps. (1) Obtain a discrete
representation of the functions and operators on the lat-
tice. (2) Solve the resulting lattice equations using itera-
tive techniques. Step (1) is an interpolation problem for
which we could take advantage of the techniques devel-
oped using the spline functions [16, 11]. The use of the
spline collocation method leads to a matrix-vector rep-
resentation on the collocation lattice with a metric de-
scribing the transformation properties of the collocation
lattice.

B. Splines

Given a set of points or knots denoted by the set {z;},
a spline function of order M, denoted by BM, is con-
structed from continuous piecewise polynomials of order
M — 1. These splines have continuous derivatives up to
an (M — 2)nd derivative and a discontinuous (M — 1)st
derivative. We only consider odd-order splines or even-
order polynomials for reasons related to the choice of
the collocation points. The ith spline is nonzero only in
the interval (z;,z;4ap). This property is commonly re-
ferred to as limited support. The knots are the points
where polynomials making up the spline join. In the in-
terval containing the tail region, the splines fall off very
rapidly to zero. The explicit construction of the splines
is explained elsewhere [11]. We can also construct exact
derivatives of splines provided the derivative order does
not exceed M — 1.

A continuous function f(z), defined in the interval
(Zmin) Tmax), can be expanded in terms of spline func-
tions as

f=) =3 BM @), (9)

where quantities ¢! denote the expansion coefficients. We
can solve for the expansion coefficients in terms of a
given, or to be determined, set of function values eval-
uated at a set of data points more commonly known as
collocation points. There are a number of ways to choose
collocation points [11, 16]; however, for odd-order splines
a simple choice is to place one collocation point at the
center of each knot interval within the physical bound-
aries

TatM—-1+ Tat+M

2 b
Here, Tpr = Trmin, TN+M = Tmax, and N is the number
of collocation points. Note that collocation points are
denoted by greek subscripts. We can now write a linear

system of equations by evaluating (9) at these collocation
points,

To =

a=1,...,N. (10)
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fa = ZBaici 3 (11)

where fo = f(za), and Bo; = BM(z,). In order to solve
for the expansion coefficients, the matrix B needs to be
inverted. However, as it stands, the matrix B is not a
square matrix, since the total number of splines with a
nonzero extension in the physical region is N + M — 1.
In order to perform the inversion, we need to introduce
additional linear equations which represent the boundary
conditions imposed on f(z) at the two boundary points
zpr and zpr4 . The essence of the lattice method is to
eliminate the expansion coefficients ¢* using this inverse
matrix. The details of using the boundary conditions
and inverting the resulting square matrix are discussed
elsewhere [11]. Following the inversion, the coefficients
are given by

¢ =3"[Bfa. (12)

One can trivially show that all local functions will have a
local representation in the finite-dimensional collocation
space

flz) — fo. (13)

The collocation representation of the operators can be
obtained by considering the action of an operator O onto
a function f(z)

Of(z) = [0BM(z))c* . (14)

3

If we evaluate the above expression at the collocation
points z,, we can write

[Of]a = Z[OB],,,-& . (15)

Substituting from Eq. (12) for the coefficients ¢, we ob-
tain

[0fla =Y [0Blai [B71]” f5
ip

= 045, (16)
B

where we have defined the collocation space matrix rep-
resentation of the operator O by

0% =3 [0Bla; [B™]% . (17)

Notice that the construction of the collocation space op-
erators can be performed once and for all at the beginning
of a calculation, using only the given knot sequence and
collocation points. Due to the presence of the inverse in
Eq. (17), the matrix O is not sparse. In practice, the
operator O is chosen to be a differential operator such
as d/dz or d?/dz?. By a similar construction, it is also
possible to obtain the appropriate integration weights on
the collocation lattice [11].
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C. HF equations in collocation space

In order to obtain a set of lattice equations which pre-
serve the conservation laws associated with the continu-
ous equations, it is essential to develop a modified vari-
ational approach. This goal is achieved by performing a
variation of the discretized form of a conserved quantity,
i.e., total energy. Consequently, the resulting equations
will preserve all of the conserved quantities on the lattice,

> AV, {B(aBy) - e lxa (B} | (18)

aBy

where the indices a, 3, and v denote the lattice points in
three-dimensional space, and AV,g, is the correspond-
ing infinitesimal volume element. Due to the presence
of derivative operators in the Hamiltonian, the explicit
form of these expressions will depend nonlocally on the
lattice indices. The general variation, which preserves
the properties of the continuous variation, is given by

6x;.(aB7) 1
= 03400/ 003'30~1~ - 19
(sx;(alﬂ"}’/) AVaﬂ-y Apla'alB' B0y ( )
The details of the discrete variation for the finite-
difference case are given in Refs. [7,8]. The three-
dimensional expansion in terms of splines is a simple gen-
eralization of Eq. (9),

Xa(®,y,2) = ) c*Bi(z)B;(y)Be(2) - (20)

ijk

The knots and collocation points for each coordinate can
be different. With the appropriate definition of bound-
ary conditions, all of the discretization techniques dis-
cussed in the previous section can be generalized to the
three-dimensional space. The details of this procedure
are given in Ref. [11].

A typical nonlocal term is illustrated below

(VXX)agy = D_ DI X5 (/BY)i+ Y D x5 (aB') ]
1 Bl

+3 " DY xx(epy )k,
,7I

where the matrices D denote the first derivative matrices
in z, y, and z directions (they can be different although
the notation does not make this obvious) calculated as
described in the previous subsection. Finally, the HF
equations can be written as matrix-vector equations on
the collocation lattice,

hxa — h-x3 - (21)

The essence of this construction is that the terms in the
single-particle Hamiltonian h are matrices in one coordi-
nate and diagonal in others. Therefore, h need not be
stored as a full matrix, which allows the handling of very
large systems directly in memory. The details of this
procedure are discussed below.
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D. Solution of the discrete HF equations

The solution of the HF equations (21) is found by using
the damped relaxation method described in Refs. [17,4]:

X5+t = Oxk — 2o D(Eo)(h* — ek)xk] (22)

where O stands for Gram-Schmidt orthonormalization.
The preconditioning operator D is chosen to be [17, 4]

-~ 11
- T
D(Ep) = [1 + E—o]
7 -1 7 -1 7 -1
~ Iz L I
[1 + E, [1 + Eo [1 + Eq )

where 7' denotes the kinetic energy operator. The solu-
tion is obtained by an iterative scheme as outlined below.

(1) Guess a set of orthogonal single-particle states.

(2) Compute the densities (4)—(7).

(3) Compute the Hartree-Fock potential.

(4) Solve the Poisson equation.

(5) Perform a damping step (22) without orthogonal-
ization.

(6) Do a Gram-Schmidt orthogonalization of all states.

(7) Repeat, beginning at step 2, until convergence.

In practical calculations we have used the damping
scale value z¢ ~ 0.05 and the energy cutoff Ey =~ 20.0. As
a convergence criterion we have required the fluctuations
in energy

AE? = \/(H?) — (H)? (23)
to be less than 1073, This is a more stringent condition
than the simple energy difference between two iterations,
which is about 107'° when the fluctuation accuracy is
satisfied. The calculation of the HF Hamiltonian also
requires the evaluation of the Coulomb contribution given
by Eq. (8). Details of solving the Poisson equations using
the splines are given in Ref. [11].

III. PARALLEL IMPLEMENTATION

In this section we discuss the details of implementing
the lattice representation of the Hartree-Fock equations
on the Paragon XP/S 5 and XP/S 35 and Intel iPSC/860
hypercube supercomputers at the Oak Ridge National
Laboratory. These machines are distributed memory,
multiple-instruction multiple-data (MIMD) computers.
The Intel iPSC/860 has 128 nodes with 8 Mbyte of mem-
ory per node and a peak rating of 60 Mflops per node
leading to a 7.6 Gflop aggregate speed; on the XP/S 5
and XP/S 35 models the peak rating per node is 75
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Mflops leading to aggregate speeds of approximately 5
Gflops and 38 Gflops, respectively. Among other differ-
ences, the iPSC/860 supercomputer is a hypercube archi-
tecture whereas the Paragon is a two-dimensional (2D)
mesh. The peak internode communication speed of the
iPSC/860 supercomputer is 2.8 Mbyte/sec and of the
Paragon supercomputer is 200 Mbyte/sec. The nodes
are connected according to the binary interconnection
scheme.

As with most parallel implementations we face the
problem of limited memory per node and the optimiza-
tion of the algorithms to minimize the communication
among nodes. Since the communication is by far the
slowest operation, one would like to have substantial
CPU usage on each node in order to minimize the frac-
tional communication overhead. There are two ways to
parallelize our Hartree-Fock equations. One way is to
distribute a number of single-particle states to each node
(Hilbert space decomposition) and have all spatial op-
erations (primarily differentiation) occur locally on each
node. In this case the only communication necessary is
for the construction of densities and currents, and the
Gram-Schmidt orthonormalization of all the states. Al-
ternately, one could keep all of the single-particle states
on each node but perform a spatial domain decomposi-
tion. This requires the distribution of, at least, two of
the three spatial dimensions in Cartesian coordinates. In
this case nonlocal operations like differentiation require
communication across all nodes, whereas the local den-
sities and currents can be constructed without commu-
nication (however, some of the currents do contain dif-
ferential operators). The load comparison between the
two approaches is briefly outlined in Table I. Consider-
ing the detailed structure of our potential, which contains
many differential operations onto single-particle states
and densities, it can be shown that the second method
leads to significantly more communication in comparison
to the former. Furthermore, due to the excellent accu-
racies obtained by the basis-spline collocation method,
the number of lattice points in each Cartesian dimen-
sion is seldom larger than 24, which limits the number
of nodes that can be used by spatial domain decompo-
sition. Similarly, the maximum number of nodes that
can be used is limited by the number of single-particle
states in the single-particle decomposition approach. In
contrast, for situations in which the load in the spatial
domain is extremely heavy, for example, if the number of
lattice points in each Cartesian dimension is greater than
100 and the number of single-particle states is small, then
it may be more advantageous to use a domain decompo-
sition. In the subsections below we outline various details
of the parallel implementation of our large-scale Hartree-
Fock program.

TABLE I. Communication overhead in the two parallelization schemes.
HF step [ Domain decomposition [ Hilbert space decomposition
densities Global broadcasts Global sums
potentials Nearest Neighbor (heavy) None
Diff. eq. solutions Nearest neighbor (heavy) None
Orthogonalization Global sums Global broadcasts (heavy)
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A. Initial setup and sequential execution

The main program calls a local subroutine called
open(ny, me, thost, mptype,iarch), which makes all of
the machine-dependent function calls to determine its ar-
guments. The variable n, is the number of allocated pro-
cessors, me is the node number of each node calling the
routine, thost is the node number of the host (generally
node 0), mptype is the process type, and iarch is the ma-
chine architecture we use to discern among various paral-
lel platforms. These values are then made available to all
subroutines. The variable iarch is used in various subrou-
tine arguments which have to call routines with different
names based on the machine type. For sequential cal-
culations setup routines have been constructed with the
same names as these parallel function calls, which essen-
tially do nothing except to set the node number to 0 and
the number of nodes to 1. These subroutines are com-
piled and linked for sequential operations. This allows for
the same modified code to run on sequential machines as
well.

B. Reading and distribution of input

The compilation of a parallel program usually takes
place on a host, which could be a dedicated computer or
actually a node. The communication between the host
and the nodes is usually much slower than node-to-node
communication and therefore should be minimized. For
our setup the host is only used for compilation, issuing
the commands to allocate machine resources, and the ac-
tual loading of the code to all of the nodes. No other
calculations are performed on the host except for the
transferring of the printed output. In practice, all nodes
contain the same program working on different data. One
of the node programs is designated to receive and send
input/output from the parallel computer to the host com-
puter. We choose node 0 for this purpose. All of the node
programs could remain identical since a common logical
if statement for the node number can select node 0 for
this task. We use a broadcast routine on all nodes which
distributes the task of passing the input from node 0 to all
other nodes using a subcube broadcast algorithm. The
details of this algorithm are discussed later. Since typi-
cal startup times are about 50 times larger than the time
it takes to transfer a single word of data between two
nodes, we have packed all of our real and integer input
into two temporary work arrays. The reading of input
and packing of data into work arrays are done by node
0. After this all nodes execute a call to the broadcast
routine bcast(iarch,buf, mbytes,0, mtype), where iarch
chooses the appropriate parallel architecture (Paragon or
iPSC/860), buf contains the real input, mbytes is the
length of the message in bytes, the “0” corresponds to
the originator node of the broadcast, and mtype is an in-
teger tag that is incremented every time an input/output
operation is performed (it tags the many messages being
sent between nodes and is used in order of arrival or de-
parture). As a result, all nodes obtain the input data
packed into the array buf. Subsequently, each node un-
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packs the contents of the temporary arrays into the real
variable names used in the code.

C. Distribution of single-particle states

The parallelization of the Hartree-Fock program is
done by distributing the single-particle states across a
number of nodes. This distribution can be complicated
by factors such as load balancing and fractional commu-
nication overheads. Since communication is far slower
than nodal floating point operation speeds, one has to
make sure that a significant amount of CPU power is
used by each node before performing a communication
bound task. The limiting factors are the number of
single-particle states that can be fitted into the memory
on each node (which in turn depends on the size of the
spatial mesh), the type of states allocated to each node,
i.e., neutron or proton or both, the amount of floating
point operations done per state (which again depends on
the size of the spatial mesh), and finally the number of
available nodes. It is, of course, clear that any situation
in which all nodes do not have the same number of states
will lead to an unbalanced load, i.e., some nodes will be
performing while others are waiting. Occasionally this
will be the case since it is not always possible to exactly
match the number of states with the number of available
nodes. One can, for example, attempt to allocate one
neutron and one proton state to each node. However, this
case is not favored by the Gram-Schmidt orthogonaliza-
tion process, discussed below, since the orthogonalization
takes place only among one type of single-particle states.
Therefore, the most optimum allocation appears to be
one or more states of the same type on each node. In
this case, within the Gram-Schmidt process, the neutrons
and protons operate within their own rings. The actual
balance between the number of states allocated per node
and the communication overhead can only be calculated
by actual performance analysis, as we have done below.

The initialization of states on each node is done by gen-
erating an indexing scheme. According to this scheme
each node initially generates its own initial guesses for
the single-particle states. Using the total number of neu-
tron and proton numbers a set of Cartesian oscillator
quantum numbers is generated. Each node uses its node
number in such a way as to have a distinct set of quantum
numbers. Using these quanta the initial states are then
generated. On a single-node system this is equivalent to
the sequential case. Of course, these quantum.numbers
are transmitted to node 0 for printing purposes, where
by looping over the node numbers information in turn is
passed to and collected by node 0.

D. Gram-Schmidt orthonormalization

The Gram-Schmidt procedure used to orthogonalize
the single-particle wave functions can be summarized in
the following equation:
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E ) = Bl E 1) — S () CEO(D)
"/’i( ’ ) 1/’1( ’ ) ;’dﬁ( ’ )(¢J(T)I¢J(T)) ,

i) =& )/ @LNi(), i>2,  (29)

where 7 labels the isospin index, distinguishing between
the proton and neutron states, and the vector & repre-
sents the grid collocation lattice in Cartesian coordinates.
The matrix element (;(7)|9:(7)) is defined as

W5 () |e(r)) = / &Y} (@, )Y@ 7) - (25)

On a distributed-memory parallel machine difficulties
arise since the wave functions are spread out over the
nodes of the computer; hence the wave function vectors
must be passed between the nodes during the orthog-
onalization process. This creates a large communica-
tions overhead since the wave function vectors are dimen-
sioned by the three-dimensional collocation lattice and
are therefore very large (~ 0.25-0.5 Mbytes). Initially,
on each node, the local wave functions v are normalized.
The sequence of operations is first for node me = 0, the
local 9’s are orthogonalized with respect to each other
via Eq. (24). In many cases time-reversal symmetry is
assumed (itirn = 1), where only half of the total number
of states need be explicitly considered. In this case it is
still necessary to orthogonalize the wave functions with
respect to the time-reversed states.

V(& 7) = TY(Z,7), (26)

where the operator T is the time-reversal operator. At
this time the orthogonalized states are then normalized.
Not only are normalized states desired in the end, but for
subsequent orthogonalizations the Gram-Schmidt proce-
dure assumes normalized states. Node me = 0 broad-
casts its local wave vectors to all of the other nodes,
which then orthogonalize their local wave vectors with
respect to the ones received from node 0, as well as the
time-reversed partners. Next node 1 proceeds to orthogo-
nalize all of its local vectors as node 0 has just done. Node
1 then normalizes its local ¥’s and broadcasts them to all
of the other nodes. For nodes me > inode the local wave
functions are orthogonalized with respect to the received
wave vector 9'. Again the time-reversal case can also be
considered. The procedure proceeds for all of the nodes,
except that it is not necessary for the last node to broad-
cast the local ¥’s. At the end all of the wave functions
are already normalized on their respective local nodes.

To optimize the Gram-Schmidt procedure for use on
the Paragon supercomputer several modifications were
made. One change alluded to earlier is to place the
neutron and proton states on nonoverlapping sets of
nodes. The ideal situation is to place either one neu-
tron or one proton state only on each node. The Gram-
Schmidt procedure would then proceed among the neu-
tron and proton states separately with no communi-
cation between the two sets during the orthogonaliza-
tion process. The neutron states are placed in nodes
0,1,...,n,(1) — 1, while the proton states are placed into
nodes n,(1),np(1) +1,...,71,(1) + np(2) — 1.
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A second modification involved using the Paragon com-
munication gsendz in place of using bcast. It is clear
that not all of the nodes need to receive the broadcasted
wave function vectors, especially with the separate neu-
tron and proton sectors. The routine gsendzr sends a
vector to a specific set of destination nodes, defined in
an integer array in a semiglobal operation. The simplest
way to do this is to fill an array with all of the destination
nodes in either the proton or neutron sector in decreasing
node number:

ianode(i,1) = ny(1) — ¢,
ianode(i, 2) = ny(1) + ny(2) — 1,

Vi=1,np(1),
Vi=1,n,(2),

where n, = n,(1) + n,(2), and then to call gsendz with
the appropriate number of destination nodes specified.

This algorithm is simple, but inefficient. Because the
receiving nodes are listed in decreasing order in ianode,
the last node in the Gram-Schmidt sequence receives the
broadcasted vector first. For example, if we list the nodes
np(1) — 1 — 0 for the neutron sector, in the first pass,
node 0 via gsendx sends 9’ to nodes ny(1) — 1,...,2,1
in this order. The next node to send its local state 7’
is node 1. Node 1 must wait to receive the vector from
node 0 before proceeding to orthogonalize its local 9’
with respect to the wave function vector sent by node 0
and then to broadcast the local 9’. Therefore, in this sce-
nario, node 1 must wait for all of the destination nodes
to receive the vector from node 0, before it can proceed.
This represents a bottleneck in the communication se-
quence. A significant improvement in performance is
made when the order of the destination nodes in ianode is
reversed to increasing order. In this case node 0 broad-
casts to nodes 1,2,...,n,(1) — 1 in this order. Since
node 1 is the first node to receive 3’ from node 0, it can
immediately proceed to process and broadcast its own
local ¢, even before all of the destination nodes have fin-
ished receiving the vector sent by node 0. For cases with
a large number of states, several nodes can actually be
broadcasting their local vectors simultaneously. The en-
tire procedure remains naturally sequential and orderly,
although many of the operations are being performed si-
multaneously. These modifications involved filling the
array ianode with the following:

ianode(i — nnode0 + 1, neutron or proton) =7 —1,

(27)
where i = nnode0, nnode ,
_J1, neutron,
nnode0 = {np(l) +1, proton,
and (28)

_ [ np(1), neutron,
nnode = {np(l) + n,(2), proton.

This sequence of communications was deciphered and
verified with the help of the Intel performance monitoring
tool paragraph, which was found to be very useful.
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It was found that the use of the Paragon routine
gsendzr is not completely reliable. For example, for more
than 100 nodes, the code would sometimes stop and for
more than 200 nodes it is difficult to get gsendz to work
consistently. This is probably due to confusion arising
from the simultaneous passing of numerous large mes-
sages from various sending nodes to various receiving
nodes. Therefore handshaking is introduced for each send
and receive that would normally be performed in gsendz
so as to improve the efficiency of this process. A re-
vised version of gsendz was written, which incorporates
handshaking between the sending node and the receiving
nodes in the following fashion. For the sending routine,
the procedure is as follows. After calling gtsend, with a
positive value of nnode, gtsend loops through the integer
array ianode, where, first, a zero length message is sent
to the destination node, second, a zero length reply is re-
ceived indicating the destination node is ready to receive,
and then the long message is sent asynchronously. The
routine then waits for the last message to be completed
before exiting gtsend. Hence in this procedure a zero
length send and receive are performed in a handshak-
ing manner before the real message is passed. All of the
nonsending nodes call gtsend to make sure the message
labels msgtype are kept consistent. In this case gtsend
is called using a negative value of nnode, where gtsend
again loops through the integer array ianode. When the
local node me corresponds to an entry in zanode, the fol-
lowing occurs. First, a zero length message is received
from the sending node, second, an asynchronous receive
for the long message is posted in preparation, and finally
a zero length message is sent to the sending node to in-
dicate the receiving node is ready. A call to msgwait
is made at the end, so that gtsend waits until the long
message is completely received.

The handshaking in gtsend makes the code much more
reliable than when the routine gsendz is used. In this
form there is no problem executing with up to 250 nodes.
Also the use of asynchronous sends and receives makes
the net Gram-Schmidt routine much more efficient. The
reason is that the receiving nodes post a receive before
the message is sent, so that the lengthy message is re-
ceived directly into the node memory, bypassing the mes-
sage buffer. Also, the global sending process is performed
asynchronously as well and the sending node need not
wait for the previous send to be completed before pro-
ceeding onto the next send. Results of the increase in
efficiency will be shown in Sec. IV.

E. Broadcasts and global summations

Here we discuss some of the algorithms used in per-
forming the communication tasks mentioned above. We
have already discussed the communication tasks involved
in the Gram-Schmidt process. In addition to Gram-
Schmidt procedures we have to perform global sums for
the densities and currents given by Eq. (7). In practice,
we treat global sums on the iPSC/860 supercomputer dif-
ferently from the Paragons due to their architectural dif-
ference (hypercube versus 2D mesh). For the iPSC/860
supercomputer the basic algorithm is the broadcast algo-
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rithm which ensures that messages are transmitted along
routes which do not interfere with others and the com-
munication load is distributed in a balanced way. For the
hypercube architecture the neighboring nodes are identi-
fied by their Gray code [18, 19], which is a binary inter-
connection scheme where the processors are numbered as
decimal numbers, beginning with 0, and arranged such
that their binary representations only differ by a single
bit location. To perform broadcast and global sums we
have used the subcube broadcast algorithm [20]. This al-
gorithm has the communication tree as shown in Fig. 1
for an eight node cube. Notice that along each branch
binary representations differ only by one bit location. Be-
low is the algorithm we have used on the iPSC/860 su-
percomputer:

send message to nodes me + k, V me <k,

receive message, if k < me < 2k,

perform above operation V k=1,2,4,8,...,n

where n is the dimension of the cube and me denotes
the node number. The last argument of the send routine
is the destination node. On the Paragon supercomputer
the broadcast is done by using a global option of the syn-
chronous csend routine, which then sends a message to
all other nodes. The receiving nodes receive the message
in a normal fashion.

The generalization of the above broadcast algorithm
can be used to perform global summations on the
iPSC/860 supercomputer. This is done by first perform-
ing a reverse broadcast by starting from the bottom of
the broadcast tree and accumulating the results at node
0. Subsequently, node 0 performs a forward broadcast
to distribute the result to all nodes. On the Paragon we
again use the resident routine gdsum for global double
precision summation.

IV. NODAL OPTIMIZATION

The previous section contains discussions about in-
creasing the efficiency of the parallel implementation, es-
pecially in regard to decreasing the communication over-
head. Effort was also directed in this work to increase
the efficiency of the nodal operation, in particular, pro-
viding increased vectorization of the code. Typically this

7

FIG. 1. Broadcast tree for an eight-node cube using the
subcube algorithm.
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involved disentangling loops resulting in larger vectoriz-
ing inner loop structures. An example of the approach
that we have taken is presented in this section. In par-
ticular we consider the operation of a matrix operator in
the y coordinate onto a wave vector. A specific example
of such a matrix operator is the gradient operator in the
y direction as represented in the collocation spline basis
as given in Eq. (17). Such an operation can be written
in the following fashion:

"/’out(iz,iy7iza 8, k) = Z Y(iy’jy)"/’in(izajwiz’ 3, k) ’
Jy

Vs,k=1,2 iz <ng;i,<n,.

Here the indices s and k correspond to nucleon spin and
to real and imaginary parts, respectively. To obtain a
larger inner loop structure, a call is made to a subroutine,
which reorders the indices in the following fashion:

::1(1’ iy) =1/)i,n(i¢,iz,8,k,iy) = "/}in(iz,jyaiz’sak) ’
’(I):),ut(i?iy) =¢;ut(iziiz?s’k’ 21/) = d’out(izajy’iz’si k) .

Here the index i = s X k X i, X i, and i < n, where
n = 4nyn,. With this reordering the matrix operation
now becomes

Vous(iyiy) = D ¥ iy, Jy )b (i, 3y), Vi< n.
iy
The inner loop over ¢ is now much larger and so the
vectorization becomes much more efficient. In the end
the wave vector indices must be reordered back to the
original situation. These four operations are performed
using efficient subroutine calls.

For collocation grid sizes of 162, 203, and 243, we find
that for this particular case the time required for execu-
tion is reduced by about 42-43%. For the z direction
the improvement is about 48-49 % and for the = direc-
tion we find about a 35%, 23%, and 14% improvement
for the 163, 203, and 243 lattice grid size calculations,
respectively. Note that because of the order of the label-
ing, the corresponding auxiliary routines for the = and
z directions are not the same as in the y direction.

V. TIMING STUDIES

For timing comparisons executions on several plat-
forms were performed. On the parallel machines the max-
imum number of nodes possible for each case was used,
where one nucleon state was placed on each node (4 is
the number of nucleons, equal to the number of nodes),
unless otherwise stated. Nuclei with equal number of pro-
tons, Z, and neutrons, N, were calculated, where in this
situation the calculation and communication time for the
proton and neutron sectors will be essentially equivalent.
For the vast majority of nuclei N and Z are not equal,
and hence the computational burdens of the two sectors
will be unequal, where basically the time difference will
correspond to the different amount of time spent within
the Gram-Schmidt procedure.

Static Hartree-Fock calculations were performed for
160, 325, 64Ge, and 128Gd nuclei, where N = Z in these
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cases. The size of the basis-spline collocation lattice was
also varied, where we studied grids of 163, 203, 243, and
263 lattices. The code was run for 100 iterations and
then continued for an additional 100 iterations. The rea-
son for this procedure was to take into consideration the
initial startup time for initializing a calculation as well
as the time required for storing and retrieving the wave
functions. Also, in the beginning of some calculations it
may be necessary to perform many additional iterations
of the Poisson solver due to the initial density configura-
tion. It turns out for the cases considered here that these
additional times were negligible. Only the times for the
initial 100 iterations are shown and discussed.

In Fig. 2, the total CPU time per node is shown for the
calculation of 1®0O as a function of the lattice grid size.
Due to memory limitations we were unable to perform
calculations with grids larger than 223 on the iPSC/860
supercomputer. Although the Paragon supercomputer is
a virtual machine, if there is any significant swapping of
memory, then the performance on the Paragon deteri-
orates dramatically. The Paragon models, XP/S 5 and
XP/S 35, at ORNL presently have 16 Mbytes/node mem-
ory, with about 10 Mbytes available for computational
use. The XP/S 35 supercomputer will be expanded in
the near future to 32 Mbytes/node. Present plans are
for ORNL to obtain a machine with 64 Mbytes/node,
which will eventually be expanded to 128 Mbytes/node.
The increased memory will be very useful for our pur-
poses, because larger lattices will be required for large
exotic nuclei. With present memory limitations on the
Paragon supercomputers we are essentially constrained
to a maximum of 243 lattice sizes.

The total CPU time/node as a function of A is shown
in Fig. 3 for fixed lattice sizes. The CPU execution time
is retrieved for each node. The “total CPU time/node” as
defined in this paper is not the average execution time per
node, but the nodal execution time which is the longest.
This would then correspond to the amount of wall clock
time required for execution with no time sharing. The
average nodal execution time and the maximum nodal
execution time are in general very close due to necessary

2000 | W-—MIBM RS6000/360 [0-100 ] ]
: O -01BM RS6000/360 [101-200 it}
@—@PARAGON [0-100 i]
— O-—OPARAGON [101-200 it}
3 ©—@iPSC/860 [0-100 it]
2 1500 [ <O-—OiPSC/860 [101-200 ] ]
£
[}
f:
< 100.0
g™ 1
)
5]
50.0 - / i
0.0 L
16 18 20 22 24 26
n
FIG. 2. A timing comparison for calculations of 6O is

plotted for different platforms as a function of n, the lattice
grid size. The abbreviation it denotes iterations.



5104
1500 & " @@ Paragon ' T —JJ
=—m IBM RS6000/360 3
100.0 | *—@iPSC/860 1
A—ACray 2 I ]
50.0 | ./.,/ :

Z
£ oo o + : ; : ‘,

2
E 1000 | ]
A 4
3 ‘{/‘ o
2 50.0 ¢ e
2 00 —%’% . ; —
S 600 f i
L/ ]
400 | ‘//o j
200f¢ e
— 1
L 4 X . , . ]

0.0 e
16 32 48 64 80 96 112

A, the number of single particle states

FIG. 3. The total CPU execution time for 100 iterations
per node on several platforms is shown as a function of A,
the number of single-particle states. For the Paragon and
the iPSC/860 parallel computers A is equal to the number of
nodes used in these computations. The upper, middle, and
lower panels correspond to collocation lattice grid sizes of 242,
203, and 16® points, respectively.

global synchronizing operations. In Fig. 3 the timing re-
sults are shown for the Paragon, iPSC/860, and Cray 2
supercomputers and for an IBM RS6000/360 worksta-
tion, which has been rated at 22.5 Mflops for double
precision Fortran Linpack. Typical calculations involve
about 500 iterations and so it is clear that, for large nu-
clei, sequential machines would become very unwieldy.
One can see that the Paragon supercomputer provides a
superior platform in comparison to both the IBM work-
station and the iPSC/860 supercomputer. For 64 and
128 nodes, the Paragon is faster than the Cray 2 super-
computer. The execution time for the sequential Cray
supercomputer is basically linear with A. With expected
improvements in the nodal processor speed, the perfor-
mance of the Paragon should improve and become much
faster than the Cray supercomputer.

For large A, the execution time/node appears to in-
crease linearly for A > 32, although there seem to be
some fluctuations in the calculated CPU time, probably
mostly due to changes in the amount of communication
traffic on the machine. For example, for A = 128 and a
203 lattice we obtained a CPU time/node of 38.48 min
in one run and 40.23 min in another.

The time used for communication resides basically in
two places. The global double precision sums described
in Sec. III E take about 10% of the total nodal CPU exe-
cution time. This 10% overhead remains consistent when
varying the size of the lattice and the number of nodes
or wave functions, and even in comparison between the
iPSC/860 supercomputer and the Paragon supercomput-
ers. For cases where the number of nodes is A/2, then
the global sums take about 6-7 % of the total nodal exe-
cution time.

The largest amount of communication time is used dur-
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ing the Gram-Schmidt orthogonalization procedure. This
procedure cannot be executed in parallel and involves the
passing of large messages between the nodes. Since this
procedure involves both computation and communica-
tion which is in general done sequentially, the timing of
the whole Gram-Schmidt procedure will be considered.
It is difficult to separate out the communication time,
since some nodes only send messages, while other nodes
will only receive messages, and most nodes will do a com-
bination of both. Because of the sequential nature of the
Gram-Schmidt procedure, for both the neutron and pro-
ton sectors, before the last node in each sector can process
its local wave function it must wait for all of the other
nodes in the sector to first complete orthogonalizing their
local wave vectors and to pass this wave vector to the last
node. Hence the last node will have a great deal of idle
time, while the first node will complete its Gram-Schmidt
procedure quickly and take much less time than the last
node. For N # Z nuclei the sectors with the most nucle-
ons may take much more time than the other sectors. In
some cases this difference can be rather large.

In Fig. 4 the maximum and minimum nodal time spent
within the Gram-Schmidt routine is shown to illustrate
the inherently sequential nature of this procedure. Times
are also shown for the iPSC/860 and Cray 2 supercom-
puters and the sequential IBM workstation. As the num-
ber of nodes, A, is increased, the maximum and min-
imum Gram-Schmidt execution time increases linearly.
This scaling feature will be discussed in more detail later
in this section. It is interesting to note that the Gram-
Schmidt operation time spent for the Cray 2 supercom-
puter with A = 128 is greater than the corresponding
Paragon time. The fraction of the total nodal execu-
tion time is displayed in Fig. 5. These fractions are ob-
tained by dividing the times given in Fig. 4 by the cor-
responding nodal execution times given in Fig. 3. As
A increases, it is clear that the Paragon supercomputer
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FIG. 4. The execution CPU time per node for 100 iter-

ations in minutes for the Gram-Schmidt routine is plotted.
The upper, middle, and lower panels correspond to colloca-
tion lattice grid sizes of 24, 203, and 162 points, respectively.
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Fraction of CPU time for Gram-Schmidt routine

0o LT . ‘ . . N
16 32 48 64 80 96 112 128
A
FIG. 5. The fraction of time spent in the Gram-Schmidt

routine during execution of the code is shown. The curve
labels are the same as those given in Fig. 4. The upper,
middle, and lower panels correspond to collocation lattice grid
sizes of 243, 20%, and 16> points, respectively.

is much more efficient in communication in comparison
with the iPSC/860. On the Paragon supercomputer for
large A the maximum fraction of time spent in the Gram-
Schmidt procedure is about 40-50 %, thus creating a sig-
nificant overhead for the program.

The modifications to the Gram-Schmidt routine as de-
scribed earlier provide considerable improvement in ex-
ecution time and efficiency. The timing results shown
in Figs. 2-5 use the improved version of the Gram-
Schmidt procedure with the Paragon routine gsendz.
The old Gram-Schmidt routine, which uses a general
broadcast to all other nodes, is only able to use a max-
imum of min(Z, N) nodes, while the modified Gram-
Schmidt procedure is able to use A = N + Z nodes.
For Z = N = A/2 nodes timing comparisons using the
old and new Gram-Schmidt routines are shown in Fig. 6.
Also shown are results with the new Gram-Schmidt rou-
tine using A nodes and the case where gtsend is used in
place of gsendz. A 203 lattice grid is used in these com-
putations. Recall that the new Gram-Schmidt routine
maintains separate proton and neutron sectors with no
communication between the two sectors. The old Gram-
Schmidt procedure lays the neutron sector on top of the
proton sector where both sectors span all of the nodes. In
Fig. 6 the triangles pointing up correspond to the maxi-
mum nodal times for the old Gram-Schmidt routine. The
triangles pointing down use the new Gram-Schmidt rou-
tine with the solid symbols representing the maximum
nodal times. In the middle panel the modified Gram-
Schmidt procedure reduces the Gram-Schmidt execution
by about 50% and hence reduces the total nodal CPU ex-
ecution time. This savings becomes especially important
for very large nuclei.

In comparison with the A node calculation represented
by the circles, the minimum nodal time spent in the new
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FIG. 6. A comparison of the various modifications to the
Gram-Schmidt (GS) routine as a function of A, the number
of nucleons, is shown. The collocation lattice grid is fixed
to 20% points. The results shown are the maximum nodal
times for execution on the Paragon supercomputer. The curve
with the squares corresponds to the calculation which uses the
modified gsendz with handshaking. The bottom panel shows
the total execution time/node in minutes, the middle panel
shows the nodal time spent within the GS routine, and the
top panel shows the fraction of time spent in the GS routine
in the same fashion as in Fig. 5.

Gram-Schmidt routine is the same as the A/2 node calcu-
lation using the new Gram-Schmidt routine. To make a
comparison with the maximum nodal time in the Gram-
Schmidt routine we need to consider the amount of com-
munication and computation involved in the time the last
node in each sector must spend in the Gram-Schmidt rou-
tine. The amount of computation that the last node must
either wait for or perform is essentially the same in these
two cases, so let us consider the difference in communica-
tion time. Given N neutrons, for the A node case the last
node must perform or wait for V — 1 sends and receives.
For the A/2 node case the last node is involved with
2 (yz_ - 1) = N — 2 sends and receives. So, even though
it would seem that with fewer nodes and a sequential rou-
tine, there should be less communication, this is not the
case. The actual communication time involved with the
last node is essentially the same for these two cases. This
is reflected in Fig. 6, except for the A = 128 point, which
is probably high due to fluctuations in traffic on the ma-
chine. Since the amount of communication involving the
last node is proportional to N, the time spent within
the Gram-Schmidt routine should scale linearly, which is
precisely the pattern observed in Fig. 4.

Although the Gram-Schmidt procedure in a strictly
sequential sense does not increase linearly, but geometri-
cally, the behavior seen in Fig. 6 can be understood with
the following discussion. As described in Sec. IIID the
modified new Gram-Schmidt routine uses gsendz in a
pipelined fashion. By having a node broadcast the local
wave vector in a particular order, i.e., to the next node in
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the orthogonalizing sequence, one can make the commu-
nication more efficient and reduce the idle time. For ex-
ample the following sequence for the new Gram-Schmidt
routine can be stated as follows. Node 0 computes, then
broadcasts to nodes 1,2,..., N — 1. Since node 1 is the
next node in the sequence and is the first to receive the
wave vector from node 0, node 1 can immediately re-
ceive, compute, and then broadcast its local wave vector
to nodes 2,3,...,N — 1. Node 2 then proceeds as well,
etc. Hence the broadcasting is performed in a pipeline
fashion, since for large IV, there can be several wave vec-
tors being broadcast from several nodes at the same time,
all of which will eventually be received by node N — 1.
Also, while, for example, node 1 is receiving and com-
puting, the other nodes are also receiving and computing
at essentially the same time, with some delay. Thus the
computations within the Gram-Schmidt routine are also
performed in a pipeline fashion and hence the compu-
tation time should increase linearly with A as well as
the communication time. In the top panel of Fig. 6 it
can be seen that the percentage of nodal time spent in
the new Gram-Schmidt routine is significantly reduced
in comparison with the old Gram-Schmidt results. For
larger nuclei, for example, A = 238, Z = 92 uranium,
this savings becomes important.

The use of gtsend in place of gsendx provides addi-
tional improvement in performance. Not only does the
code become much more reliable, but the actual execu-
tion is much more efficient. In the middle panel, one can
see that the maximum nodal time for the Gram-Schmidt
procedure is reduced by about one third. This reduces
the fraction of time spent within the Gram-Schmidt rou-
tine from about 43% to about 30%. In summary, all of
the modifications performed on the Gram-Schmidt rou-
tine provide an improvement of about a factor of 3 and a
net savings of about 50% in total nodal execution time.
The resulting improved performance is comparable to or
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better than that found on the sequential Cray 2 super-
computer.

VI. CONCLUSIONS

Massively parallel platforms, such as the Paragon and
the iPSC/860 supercomputers, provide a much improved
vehicle for performing mean-field calculations. Because
of the greater computational capabilities, calculations
of large complex and exotic nuclear many-body systems
can now proceed with a greater degree of sophistication
than has previously been possible. A program to per-
form static Hartree-Fock mean-field calculations using a
full three-dimensional basis-spline collocation lattice has
been developed with no spatial or time-reversal symme-
tries imposed. This program has been ported to the
Paragon and the iPSC/860 supercomputers. In addition,
an algorithm has been developed which takes advantage
of some of the features of the Paragon supercomputer to
streamline the communication intensive Gram-Schmidt
orthogonalization routine by pipelining the message pass-
ing and some of the computations.
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